Introduction to Temporal Logic

Mads Dam
Theoretical Computer Science
KTH, 2015



About the Course

Lecturers
Content
Examination
Lecture material
Registration



What is TL About?

Formalised properties of time-varying systems

What time-varying systems?

* What properties?
» Algorithms This is why we think
* Proof systems formalisation pays off

/

Some form of tractability

Our tasks:
« Show we can do useful stuff with this

« Understand and compare set-ups for expressiveness
and tractability



What Time-Varying Systems?

Continuous real-valued functions?
Discrete program traces?
Execution trees?

Automata?

Markov chains?

Java code?

Distributed processes?

Real time? Or implicit time?
Histories or future?

Finite or infinite?

Linear or branching? Tree shaped? Graph shaped?



Default Choice — Traces/Paths/Runs

Time is discrete
Starts at O
Goes on forever

O 1 2 3 n-1n n+1

Time points decorated by events
a b a d foo a bar
o 1 2 3 n-1 n n+1
Or conditions/truth assignments/valuations
P-Q -P-Q -P,Q
PQ -P-Q P,Q P,Q
o 1 2 3 n-1n n+1
Or execution traces
x=0 x=1 x=8 x=3 x=5 x=0 x=0
y=0 y=0 y=0 y=1 y=2 y=0 y=0

| | | | | | | >
I I v

O 1 2 3 n-1n n+1




How Are Traces Produced?

« Maximal runs through a transition system/automaton
- (Q.R,Qy)
— Q set of states
— R C Q x Q transition relation, total
— Q, € Qinitial states
— Traces/runsw=q,Rq,R...Rq,Rqg,R ...

In practice:
« Take your favourite programming/modeling language
Equip it with discrete transition semantics

Determine what should be observable events /
conditions / execution states

(Add looping at the end to get traces to be infinite)
Off you go



Example - Concurrent While Language

Commands:

Cmd:=skip|x:=e|Cmd;Cmd | if e Cmd Cmd
| while e Cmd | await e Cmd | spawn Cmd
| Cmd || Cmd

Stores 0 € X >4, v € Val

Configurations ¢ ::= o | <Cmd, o>



Example Il

Transitions:

o->0 (...justto getlooping ...)
<skip,0> -> o

<x:=e,0> -> o[x — ||e||o]

<Cmd,;Cmd,,0> -> <Cmd,’;Cmd,,0™>

If <Cmd,,0>-><Cmd,’,0’>
<Cmd,;Cmd,,c> -> <Cmd,,c">

if <Cmd,,0> -> ¢’

(... remaining rules in class ... )

Conditions: Boolean/FO expressions in dom(o,)

Traces: c,->c,->C,->...->C4->C, > ...



Linear Time Temporal Logic, LTL

Logic of temporal relations between events in a trace:
— Invariably (along this execution) x -y + z
— Sometime (along this execution) an acknowledgement packet
is sent

— If thread T is infinitely often enabled (along this execution) then
T is eventually executed

By no means the last word:
— Last packet received along channel a (along this execution)
had the shape (b,c,d) (past)
— For all executions (from this state) there is an execution along
which a reply is eventually sent  (branching)
— No matter what choice B made in the past, it would necessarily
come to pass that y (historical necessity)



LTL

Syntax:
¢:=P|:d[oAd|Fo|[GCop[dU¢|O¢

Intuitive semantics:

— P: Propositional constant P holds now/at the current time
instant

— F¢: At some future time instant ¢ is true
— G¢: For all future time instants ¢ is true
— ¢ Uy: ¢ is true until  becomes true

— O¢: ¢ is true at the next time instant



Fo:

Go:

o U y:

O¢:

Pictorially




Semantics

Run w

Satisfaction relation w2 ¢

Assume valuation v

v(P): Set of states for which P holds
wk: k’th suffix of w

w 2 P iff w(0) 2 v(P)

w?2:¢piffnotw?¢

w2 AYiffw?zdand w2y

w 2 F¢ iff exists k = 0. wk 2 ¢

w2 G¢ iff for all k = 0. wk2 ¢

w2 ¢ Uy iffexists k = 0. wk2yp and foralli: 0 - i <k.w' 2 ¢
w2 O¢ iff w2 ¢

For transition system T = (Q,R,Q,) and all valuations v:
T2¢iffforallrunswof T, w?¢



Some LTL Formulas

¢ Gy =:(p A )
¢ly=19Cy

Fo =true U ¢

Go =:F:0

oV =[lv G U (oAY))

— (sometimes called "release”)

FGo

— ¢ holds from some point forever = ¢ holds almost always

GF¢
— ¢ holds infinitely often (i.o.)
GF¢ ! GFy
— if ¢ holds infinitely often then so does

— Is this the same as G(F¢ — Fy)? As GF(¢ — ¢)? AsFG- ¢ v
GF(pa Fy)?



Spring Example

release
m release g
0 pull N 2
extended extended
malfunction

Conditions: extended, malfunction

Sample paths:

* (0919091929295 -..
* (0919202195 ...
* (09190919091 ---



Satisfaction by Single Path

release

|
m —=—(q, W = Q0919091929295 ---

extended extended
malfunction

Forr:
extended? GFextended?
Oextended? extended U malfunction?
OOQOextended? (:extended) U extended?
Fextended? (Fextended) U malfunction?
Gextended? (F:extended) U malfunction?
FGextended? G(:extended ! Oextended)

FGmalfunction?



Satisfaction by Transition System

release

T m release q
' ° N 2

extended extended
malfunction

For T:
extended? GFextended?
Oextended? extended U malfunction?
OOQOextended? (:extended) U extended?
Fextended? (Fextended) U malfunction?
Gextended? (F:extended) U malfunction?
FGextended? G(:extended ! Oextended)

FGmalfunction?



Example: Mutex

Assume there are 2 processes, P, and P,
State assertions:
— tryCS;: Process i is trying to enter critical section
E.g. tryCS;: pc, =1,
— inCS;: Process i is inside its critical section
E.9.InCS;: pc, =15 C pc, = I,
Mutual exclusion:
G(:(inCS, £ iInCS)))
Responsiveness:
G(tryCS, ! F inCS))
Process keeps trying until access is granted:
G(tryCS, ! ((tryCS, U inCS;) C GtryCS)))



Example: Fairness

States: Pairs (q,a)
o label of last transition taken, so
q*q
(a.p) ' (q,a)
2. Finite set of labels partitioned into subsets P
P: "(finite) set of labels of some process”

State assertions:
— enp: Some transition labelled o 2 P is enabled
i.e. (q,p)2 v(en,) iff 9 q’.q!* g’
— execp: Label of last executed transition is in P
i.e. (q,a)2 v(execp) iff a2 P
Note: enp $ C,, pen,,, and execp $ G, pexeC,



Fairness Conditions

Weak transition fairness:
A o5 FG(en, A : execy,)
Or equivalently
A os(FGeng, | GFexec,)
Strong transition fairness:
A os(GFeng, | GFexec,)
Weak process fairness:
AL FG(enp /£ : execp)
Strong process fairness:
A, (GFenp ! GFexecp)
(Many other variants are possible)

Exercise: Figure out which implications hold between
these four fairness conditions. Draw a picture



Branching Time Logic

Sets of paths? Or computation tree?




Computation Tree Logic - CTL

Syntax:
¢ =P [0 oY |AFY | AGH | Alo U ) | AXd

Formulas hold of states, not paths

A: Path quantifier, along all paths from this state

So:
— AF¢: Along all paths, at some future time instant ¢ is true
— AG¢: Along all paths, for all future time instants ¢ is true
— A(¢ U y): Along all paths, ¢ is true until ¢ becomes true
— AX¢: ¢ is true for all next states

Note: CTL is closed under negation so also express dual modalities
EF, EG, EU, EX (E is existential path quantifier). Check!



CTL, Semantics

Valuation v: P— Q' p Q as before

q?Piffq2v(P)

g?:¢iffnotg?¢

Q¢ A yiffg*gandq®y

q 2 AF¢ iff for all w such that w(0)=q exists k2N such that w(k) ? ¢
q 2 AG¢ iff for all w such that w(0)=q, for all k2N, w(k) ? ¢

q 2 A(¢ U ) iff for all w such that w(0)=q, exists k2N such that w(k) ? ¢
and for all i: 0- i <k. w(i) ? ¢

q 2 AX¢ iff for all w such that w(0) = q, w(1) 2 ¢
(iff for all 9" such thatq! q’, 92 ¢)

For transition system T = (Q,R,Q):
T 2 ¢ iff for all g2 Q,, 9,2 ¢



CTL — LTL: Brief Comparison

LTL in branching time framework:
— ¢ — A¢ ( ¢ to hold for all paths)

CTL * LTL: EF¢ not expressible in LTL
LTL * CTL: FGP not expressible in CTL

CTL*: Extension of CTL with free alternation A, F, G, U, X

Advantages and disadvantages:
— LTL often "more natural”

— Satisfiability: LTL: PSPACE complete, CTL: DEXPTIME
complete

— Model checking: LTL: PSPACE complete, CTL: In P



Adding Past

Add to LTL pasttime versions of the LTL future time
modalities

Previously, some time in the past, always in the past,
since

Theorem (Gabbay’s separation theorem): Every formula
in LTL + past is equivalent to a boolean combination of
"pure pasttime” or "pure future time” formulas

Note: This applies regardless of whether time starts at 0
or at -«

Theorem (Elimination of past): Pasttime modalities do not
add expressive power to LTL

But:

Theorem (Succinctness, LMS’02): LTL + past is
exponentially more succinct than LTL



Expressive Completeness

LTL is easily embedded into FOL + linear order

FOL + linear order: First-order logic with 0 and <, unary
predicate symbols, and interpreted over o

Theorem (Kamp'68, GPSS’'80, Expressive completeness)

If L is definable in FOL + linear order then L is definable in
LTL



So Are We Done?

What about "every even state”

P-P P P P P P

o 1 2 3 2n-12n2n+1

Theorem: A’every even state”P is not expressible in LTL,
CTL, CTL’

One solution:
« LTL formulas determine infinite words

« So: skip temporal logic (... temporarily ...) and use
automata on infinite words instead



Automata Over Finite Words

Finite state automaton A = (Q,2,A,l,F):
— Q: Finite set of states
— 2 Finite alphabet
— AU Q£ X £ Q: Transition relation
Write g!2 q’ for A(g,a,q’) as before

— |y Q: Start states a
— F p Q: Accepting states
. (] )
[
a

Word a,a,...a, is accepted, if there is sequence

qo !#1q4 182 ... I2n g,
such thatq,2 1and q,2 F



Automata Over Infinite Words

Letters a23 can represent events, conditions, states

Infinite word w € X;
— Functionw: o ! X
— Equivalently: Infinite sequence w = aja,a, ... a, ...
— Terminology: w-words
— w-words are traces / paths / runs

Buchi automaton: Finite state automaton, but on infinite
words

w-word w is accepted if accepting state visited infinitely (")
often

w-language L C X is Buchi definable if L is the set of w-
words accepted by some B. A.



Example

Which infinite words are accepted?

— ababab ... (= (ab)®) ?
— aaaaaa... (=a®) ?
— bbbbbb... (=b») ?
— aaabbbbb... (= aaab®) ?

— ababbabbbabbbba... ?



Nondeterminism

« What is the language accepted by this automaton?
« What is the corresponding LTL property if b =inCS and

a=:b?
0
a,b




Another Example

Letters represent propositions

Example: GFinCS, a=inCS, b=:inCS

oSy,

b



Yet More Examples

a=inCS, £ inCS,

c = true
Property: G: a

Property: G(d ! Fe)
|dea:

— q, Haveseen:dCe
— q4: Saw d, now wait for e

B ol

dle e

e




Even More...

Property: G(a ! (bUc))
|dea:

— q,: Body of G immediately ok
— g4: Awaiting c

Property: -G(a ! (bUc)) = F(a &£ -(bUc))
|dea:

— =(bUc): b becomes false some time without ¢ having become
true first

— (. Waiting ...
— (4: Have seen a with b and -c
— g, Committing ...




Generally

Theorem: If L is LTL definable then L is the set of words

accepted by some B.A.

Why? The set of B.A. recognizable languages is closed

under all LTL connectives

Hard case is complementation [Safra’88]

BTW then we can do LTL model checking:

Represent model as B.A. A,

Represent LTL spec as A,

Emptiness of L(A) = {w | A accepts w} is polynomially
decidable

L(A,) € L(A,) iff L(A,) N = L(A,) is empty

Example: The SPIN model checker



Aside: Deterministic Buchi Automata
Suppose A recognizes ¢

Consider ¢ = FGa where X = {a,b}
—O—):
a
a,b
A deterministic

A reaches accepting state on some input a"
And on a"'ban?

And on a"'ban?ban3

And on a"'ba™ba™b..b..b ...

So: Nondeterministic Buchi automata strictly more
expressive than deterministic ones

And: Deterministic B. A. not closed under complement



Temporal Equations

|dea: Extend LTL with solutions of equations

Fo=¢ v OF9
Go=¢ A OGo
dUy=1yv(paO(Uuy))
Even ¢ = ¢ A OOEven ¢

Complication: Solutions are not unique

Exercise: How many solutions (as sets L of traces/words
w) can you find to the above four equations?



The Linear Time u-calculus, L

Formula ¢(X) in free formula variable X determines
function ¢ : L — ¢(L)

If $(X) is monotone in X then || ¢ || is monotone as function
on ({L | L € 2»},C)

Theorem (Tarski’s fixed point theorem): A monotone
function on a complete lattice has a complete lattice of
fixed points

So, for each monotone ¢(X) can find a largest and a
smallest solution of equation X = ¢(X)



L

W

Notation:
o uX.p(X): Least solution of X = ¢(X)
o  vX.p(X): Greatest solution of X = ¢(X)

Note:
* Fo=uX. ¢ v OX
« Gp=vX.p A OX

* Uy =uX yv (9 OX)
 Even ¢ =vX.p A OOX

Exercise: Exchange u and v in the 4 examples above.
What property is defined?

Hint: Which is the largest, resp. smallest L that solves the
equation?



Expressiveness of L,

Theorem: An w-language is definable in L, iff it is
recognized by a B.A.

Direct proof:
<! Represent B.A. in L, (easy)

=>: Show that B.A. definable languages are closed under
all L, connectives. Hard part is u, cf. (Dam, 92)

But many alternative characterizations exist



Alternative Characterizations

S1S: Monadic second order logic of successor
9 X(02 X A 8y8z(succ(y,z) ! (y2X $ : z2X))
A 8y(y2X 1a(y)))
(all even symbols are a’s)

QPLTL: LTL with propositional quantification
O X((X £ G(X$ O:X) AL G(x!a))

w-regular expressions
a((a[b)a)®

Theorem (Buchi et al): An w-language is recognized by a
B.A. iff it is definable in one of L ,, S1S, QPLTL, or as an
w-regular expression



What About Branching Time?

More difficult. Starting point are binary trees:

Theorem (Rabin): S2S (the monadic second-order theory
of two successors) is decidable

For more general structures use e.qg.
« Alternating tree automata

* Modal \mu-calculus

« Parity games

Much activity in the past 10 years

But this is outside the scope of this course



