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About the Course 
•  Lecturers 
•  Content 
•  Examination 
•  Lecture material 
•  Registration 



What is TL About? 
Formalised properties of time-varying systems 
 
•  What time-varying systems? 
•  What properties? 
•  Algorithms 
•  Proof systems 

 
Our tasks: 
•  Show we can do useful stuff with this 
•  Understand and compare set-ups for expressiveness 

and tractability 

This is why we think 
formalisation pays off 

Some form of tractability 



What Time-Varying Systems? 
•  Continuous real-valued functions? 
•  Discrete program traces? 
•  Execution trees? 
•  Automata? 
•  Markov chains? 
•  Java code? 
•  Distributed processes? 
•  Real time? Or implicit time? 
•  Histories or future? 
•  Finite or infinite? 
•  Linear or branching? Tree shaped? Graph shaped? 



Default Choice – Traces/Paths/Runs 
Time is discrete 
Starts at 0 
Goes on forever 

Time points decorated by events 

Or conditions/truth assignments/valuations 

Or execution traces 
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How Are Traces Produced? 
•  Maximal runs through a transition system/automaton 

–  (Q,R,Q0) 
–  Q set of states 
–  R ⊆ Q × Q transition relation, total 
–  Q0 ⊆ Q initial states 
–  Traces/runs w = q0 R q1 R … R qn-1 R qn R … 

 
In practice: 
•  Take your favourite programming/modeling language 
•  Equip it with discrete transition semantics 
•  Determine what should be observable events / 

conditions / execution states 
•  (Add looping at the end to get traces to be infinite) 
•  Off you go 



Example - Concurrent While Language 
Commands: 
Cmd ::= skip | x := e | Cmd;Cmd | if e Cmd Cmd  
   | while e Cmd | await e Cmd | spawn Cmd  

  | Cmd || Cmd 
 
Stores σ ∈ x !fin v ∈ Val 
 
Configurations c ::=  σ | <Cmd, σ> 



Example II 
Transitions: 
•   σ -> σ   ( … just to get looping …) 
•  <skip,σ> -> σ
•  <x:=e,σ> -> σ[x ! ||e||σ] 
•  <Cmd1;Cmd2,σ> -> <Cmd1’;Cmd2,σ’>  

 if <Cmd1,σ> -> <Cmd1’,σ’> 
•  <Cmd1;Cmd2,σ> -> <Cmd2,σ’>  

 if <Cmd1,σ> -> σ’ 
•  (… remaining rules in class … ) 
 
Conditions: Boolean/FO expressions in dom(σι) 
 
Traces: c0 -> c1 -> c2 -> … -> cn-1 -> cn -> … 



Linear Time Temporal Logic, LTL 
Logic of temporal relations between events in a trace: 

–  Invariably (along this execution) x · y + z 
–  Sometime (along this execution) an acknowledgement packet 

is sent 
–  If thread T is infinitely often enabled (along this execution) then 

T is eventually executed 
 
By no means the last word: 

–  Last packet received along channel a (along this execution) 
had the shape (b,c,d)  (past) 

–  For all executions (from this state) there is an execution along 
which a reply is eventually sent  (branching) 

–  No matter what choice B made in the past, it would necessarily 
come to pass that ψ (historical necessity)



LTL 
Syntax: 
 φ ::= P | :φ | φÆφ | Fφ | Gφ | φ U φ | Oφ

Intuitive semantics: 
 

–  P: Propositional constant P holds now/at the current time 
instant 

–  Fφ: At some future time instant φ is true 
–  Gφ: For all future time instants φ is true 
–   φ U ψ: φ is true until ψ becomes true 
–  Oφ: φ is true at the next time instant



Pictorially 

Fφ: … … … … φ … ... 

Gφ: φ φ φ φ φ φ φ

φ U ψ: φ φ φ φ ψ … ... 

Oφ: ... φ ... ... ... … ... 



Semantics 
Run w 
Satisfaction relation  w ² φ
Assume valuation v 
v(P): Set of states for which P holds 
wk: k’th suffix of w 

w ² P iff w(0) 2 v(P) 
w ² :φ iff not w ² φ
w ² φ Æ ψ iff w ² φ and w ² ψ
w ² Fφ iff exists k ≥ 0. wk ² φ
w ² Gφ iff for all k ≥ 0. wk ² φ
w ² φ U ψ iff exists k ≥ 0. wk ² ψ and for all i: 0 · i < k. wi ² φ
w ² Oφ iff w1 ² φ

For transition system T = (Q,R,Q0) and all valuations v: 
T ² φ iff for all runs w of T, w ² φ



Some LTL Formulas 
•   φ Ç ψ = :(:φ Æ :ψ) 
•   φ ! ψ = :φ Ç ψ
•  Fφ = true U φ
•  Gφ = :F:φ 
•   φ V ψ = []ψ Ç (ψ U (φÆψ)) 

–  (sometimes called ”release”) 
•  FGφ 

–   φ holds from some point forever = φ holds almost always 
•  GFφ

–   φ holds infinitely often (i.o.) 
•  GFφ ! GFψ  

–  if φ holds infinitely often then so does ψ 
–  Is this the same as G(Fφ → Fψ)? As GF(φ → ψ)? As FG¬ φ ∨ 

GF(φ∧ Fψ)? 



Spring Example 

Conditions: extended, malfunction 
 
Sample paths: 
•  q0 q1 q0 q1 q2 q2 q2 ... 
•  q0 q1 q2 q2 q2 ... 
•  q0 q1 q0 q1 q0 q1 ... 

q0 q1 q2 pull 

release 

release 

extended extended 
malfunction 



Satisfaction by Single Path 

extended? 
Oextended? 
OOextended? 
Fextended? 
Gextended? 
FGextended? 
FGmalfunction? 

q0 q1 q2 pull 

release 

release 

extended extended 
malfunction 

w = q0q1q0q1q2q2q2 ... 

GFextended? 
extended U malfunction? 
(:extended) U extended? 
(Fextended) U malfunction? 
(F:extended) U malfunction? 
G(:extended ! Oextended) 

For r: 



Satisfaction by Transition System 

q0 q1 q2 pull 

release 

release 

extended extended 
malfunction 

T: 

extended? 
Oextended? 
OOextended? 
Fextended? 
Gextended? 
FGextended? 
FGmalfunction? 

GFextended? 
extended U malfunction? 
(:extended) U extended? 
(Fextended) U malfunction? 
(F:extended) U malfunction? 
G(:extended ! Oextended) 

For T: 



Example: Mutex 
Assume there are 2 processes, Pl and Pr 
State assertions: 

–  tryCSi: Process i is trying to enter critical section 
 E.g. tryCSl: pcl = l4 

–  inCSi: Process i is inside its critical section 
 E.g. inCSl: pcl = l5 Ç pcl = l6 

Mutual exclusion: 
G(:(inCSl Æ inCSr)) 

Responsiveness: 
G(tryCSi ! F inCSi) 

Process keeps trying until access is granted: 
G(tryCSi ! ((tryCSi U inCSi) Ç GtryCSi)) 



Example: Fairness 
States: Pairs (q,α) 
α label of last transition taken, so 

q!α q’ 
(q,β) !α (q’,α) 

Σ: Finite set of labels partitioned into subsets P 
P: ”(finite) set of labels of some process” 
 
State assertions: 

–  enP: Some transition labelled α 2 P is enabled 
 i.e. (q,β)2 v(enα) iff 9 q’.q!α q’ 

–  execP: Label of last executed transition is in P 
 i.e. (q,α)2 v(execP) iff α2 P 

Note: enP $ Çα2 Pen{α} and execP $ Çα2 Pexec{α} 



Fairness Conditions 
Weak transition fairness: 

Æα2Σ:FG(en{α} Æ : exec{α}) 
Or equivalently 

Æα2Σ(FGen{α} ! GFexec{α}) 
Strong transition fairness: 

Æα2Σ(GFen{α} ! GFexec{α}) 
Weak process fairness: 

ÆP:FG(enP Æ : execP) 
Strong process fairness: 

ÆP (GFenP ! GFexecP) 
(Many other variants are possible) 
 
Exercise: Figure out which implications hold between 

these four fairness conditions. Draw a picture 



Branching Time Logic 
Sets of paths? Or computation tree? 
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Computation Tree Logic - CTL 
Syntax: 
 φ ::= P | :φ | φÆφ | AFφ | AGφ | A(φ U φ) | AXφ
 
Formulas hold of states, not paths 
 
A: Path quantifier, along all paths from this state 
 
So: 

–  AFφ: Along all paths, at some future time instant φ is true 
–  AGφ: Along all paths, for all future time instants φ is true 
–  A(φ U ψ): Along all paths, φ is true until ψ becomes true 
–  AXφ: φ is true for all next states 

Note: CTL is closed under negation so also express dual modalities 
EF, EG, EU, EX (E is existential path quantifier). Check! 



CTL, Semantics 
Valuation v: P ! Q’ µ Q as before 

q ² P iff q 2 v(P) 
q ² :φ iff not q ² φ
q ² φ Æ ψ iff q ² φ and q ² ψ
q ² AFφ iff for all w such that w(0)=q exists k2N such that w(k) ² φ
q ² AGφ iff for all w such that w(0)=q, for all k2N, w(k) ² φ
q ² A(φ U ψ) iff for all w such that w(0)=q, exists k2N such that w(k) ² ψ 

and for all i: 0· i < k. w(i) ² φ
q ² AXφ iff for all w such that w(0) = q, w(1) ² φ

(iff for all q’ such that q ! q’, q’² φ)

For transition system T = (Q,R,Q0): 
T ² φ iff for all q02 Q0, q0 ² φ



CTL – LTL: Brief Comparison 
LTL in branching time framework: 

–   φ ! Aφ ( φ to hold for all paths) 
 
CTL * LTL: EFφ not expressible in LTL 
 
LTL * CTL: FGP not expressible in CTL 
 
CTL*: Extension of CTL with free alternation A, F, G, U, X 
 
Advantages and disadvantages: 

–  LTL often ”more natural”  
–  Satisfiability: LTL: PSPACE complete, CTL: DEXPTIME 

complete 
–  Model checking: LTL: PSPACE complete, CTL: In P 



Adding Past 
Add to LTL pasttime versions of the LTL future time 

modalities 
 Previously, some time in the past, always in the past, 

since 
Theorem (Gabbay’s separation theorem): Every formula 

in LTL + past is equivalent to a boolean combination of 
”pure pasttime” or ”pure future time” formulas 

Note: This applies regardless of whether time starts at 0 
or at -∞  

Theorem (Elimination of past): Pasttime modalities do not 
add expressive power to LTL 

But: 
Theorem (Succinctness, LMS’02): LTL + past is 

exponentially more succinct than LTL 



Expressive Completeness 
LTL is easily embedded into FOL + linear order 
 
FOL + linear order: First-order logic with 0 and <, unary 

predicate symbols, and interpreted over ω
 
Theorem (Kamp’68, GPSS’80, Expressive completeness) 
If L is definable in FOL + linear order then L is definable in 

LTL 
 



So Are We Done? 
What about ”every even state” 
 
 
 
Theorem: A”every even state”P is not expressible in LTL, 

CTL, CTL* 

 
One solution: 
•  LTL formulas determine infinite words 
•  So: skip temporal logic (… temporarily …) and use 

automata on infinite words instead 

0 1 2 3 … … 2n-1 2n 2n+1 

P P P ¬P P P ¬P 



Automata Over Finite Words 
Finite state automaton A = (Q,Σ,Δ,I,F): 

–  Q: Finite set of states 
–   Σ: Finite alphabet 
–   Δ µ Q£ Σ £ Q: Transition relation 

 Write q!a q’ for Δ(q,a,q’) as before 
–  I µ Q: Start states 
–  F µ Q: Accepting states 

 
 
 
Word a1a2...an is accepted, if there is sequence 

q0 !a1 q1 !a2 ... !an qn 
such that q02 I and qn2 F 

a 

a 

b 

b 



Automata Over Infinite Words 
Letters a2Σ can represent events, conditions, states 
 
Infinite word w ∈ Σω:  

–  Function w: ω ! Σ
–  Equivalently: Infinite sequence w = a0a1a2 ... an ... 
–  Terminology: ω-words 
–   ω-words are traces / paths / runs 

 
Buchi automaton: Finite state automaton, but on infinite 

words 
 ω-word w is accepted if accepting state visited infinitely 

often 
 ω-language L ⊆ Σω is Buchi definable if L is the set of ω-

words accepted by some B. A. 

(!) 



Example 

Which infinite words are accepted? 
–  ababab ...   (= (ab)ω)  ? 
–  aaaaaa...  (= aω)  ? 
–  bbbbbb...  (= bω)  ? 
–  aaabbbbb...  (= aaabω)  ? 
–  ababbabbbabbbba...  ? 

a 

a 

b 

b 



Nondeterminism 
•  What is the language accepted by this automaton? 
•  What is the corresponding LTL property if b = inCS and 

a = : b? 

a,b 

a a 



Another Example 
Letters represent propositions 
 
Example: GFinCS, a=inCS, b=: inCS 
 
 

a 

a 

b 

b 



Yet More Examples 
•  a = inCS1 Æ inCS2 
•  b = : a 
•  c = true 
•  Property: G: a 

•  Property: G(d ! Fe) 
•  Idea:  

–  q0; Have seen : d Ç e  
–  q1: Saw d, now wait for e 

b 

a c 

Or just: 

b 

d ! e 

dÆ :e 

:e 

e 

q0 q1 



Even More... 
Property: G(a ! (bUc)) 
Idea: 

–  q0: Body of G immediately ok 
–  q1: Awaiting c 

 
Property: ¬G(a ! (bUc)) = F(a Æ ¬(bUc)) 
Idea: 

–   ¬(bUc): b becomes false some time without c having become 
true first 

–  q0: Waiting ... 
–  q1: Have seen a with b and ¬c 
–  q2: Committing ... 

 

q0 q1 

: a Ç c 

a Æ b Æ : c 

b Æ : c 

c 

q0 q1 

true b Æ : c 
a Æ b Æ : c 

q2 aÆ : b Æ : c : b Æ: c 

true 



Generally 
Theorem: If L is LTL definable then L is the set of words 

accepted by some B.A. 
Why? The set of B.A. recognizable languages is closed 

under all LTL connectives 
Hard case is complementation [Safra’88] 
 
BTW then we can do LTL model checking: 
•  Represent model as B.A. A1 
•  Represent LTL spec as A2 
•  Emptiness of L(A) = {w | A accepts w} is polynomially 

decidable 
•  L(A1) ⊆ L(A2) iff L(A1) ∩ ¬ L(A2) is empty 
•  Example: The SPIN model checker 



Aside: Deterministic Buchi Automata 
Consider φ = FGa where Σ = {a,b} 
 
 
Suppose A recognizes φ
A deterministic 
A reaches accepting state on some input an1 

And on an1ban2 
And on an1ban2ban3 
And on an1ban2ban3b ... b ... b ... 
So: Nondeterministic Buchi automata strictly more 

expressive than deterministic ones 
And: Deterministic B. A. not closed under complement 

a,b 
a a 



Temporal Equations 
Idea: Extend LTL with solutions of equations 
 
•  Fφ = φ ∨ OFφ
•  Gφ = φ ∧ OGφ
•   φ U ψ = ψ ∨ (φ ∧ O(φ U ψ)) 
•  Even φ = φ ∧ OOEven φ
 
Complication: Solutions are not unique 
 
Exercise: How many solutions (as sets L of traces/words 

w) can you find to the above four equations? 



The Linear Time µ-calculus, Lµ

Formula φ(X) in free formula variable X determines 
function  φ : L ! φ(L) 

 
If φ(X) is monotone in X then || φ || is monotone as function 

on ({L | L ⊆ Σω},⊆) 
 
Theorem (Tarski’s fixed point theorem): A monotone 

function on a complete lattice has a complete lattice of 
fixed points 

 
So, for each monotone φ(X) can find a largest and a 

smallest solution of equation X = φ(X) 



Lµ 
Notation: 
•   µX.φ(X): Least solution of X = φ(X) 
•   νX.φ(X): Greatest solution of X = φ(X) 
 
Note: 
•  Fφ = µX. φ ∨ OX 
•  Gφ = νX.φ ∧ OX 
•   φ U ψ = µX. ψ ∨ (φ ∧ OX) 
•  Even φ = νX.φ ∧ OOX 
 
Exercise: Exchange µ and ν in the 4 examples above. 

What property is defined? 
Hint: Which is the largest, resp. smallest L that solves the 

equation? 



Expressiveness of Lµ

Theorem: An ω-language is definable in Lµ iff it is 
recognized by a B.A. 

Direct proof:  
⇐: Represent B.A. in Lµ (easy) 
⇒: Show that B.A. definable languages are closed under 

all Lµ connectives. Hard part is µ, cf. (Dam, 92) 
 
But many alternative characterizations exist 



Alternative Characterizations 
S1S: Monadic second order logic of successor 

 9 X(02 X Æ 8y8z(succ(y,z) ! (y2X $ : z2X))  
Æ 8y(y2X ! a(y))) 

 (all even symbols are a’s) 
 
QPLTL: LTL with propositional quantification 

 9 X((X Æ G(X $ O:X) Æ G(x ! a)) 

ω-regular expressions 
a((a [ b)a)ω

 

Theorem (Buchi et al): An ω-language is recognized by a 
B.A. iff it is definable in one of Lµ, S1S, QPLTL, or as an 
ω-regular expression  



What About Branching Time? 
More difficult. Starting point are binary trees: 
 
Theorem (Rabin): S2S (the monadic second-order theory 

of two successors) is decidable 
 
For more general structures use e.g. 
•  Alternating tree automata 
•  Modal \mu-calculus 
•  Parity games 
 
Much activity in the past 10 years 
 
But this is outside the scope of this course 


