#### Introduction to Temporal Logic

Mads Dam Theoretical Computer Science KTH, 2015

#### About the Course

- Lecturers
- Content
- Examination
- Lecture material
- Registration

## What is TL About?

Formalised properties of time-varying systems

- What time-varying systems?
- What properties?
- Algorithms
- Proof systems

This is why we think formalisation pays off

Some form of tractability

Our tasks:

- Show we can do useful stuff with this
- Understand and compare set-ups for expressiveness and tractability

## What Time-Varying Systems?

- Continuous real-valued functions?
- Discrete program traces?
- Execution trees?
- Automata?
- Markov chains?
- Java code?
- Distributed processes?
- Real time? Or implicit time?
- Histories or future?
- Finite or infinite?
- Linear or branching? Tree shaped? Graph shaped?

#### Default Choice – Traces/Paths/Runs

Time is discrete

Starts at 0

Goes on forever



## How Are Traces Produced?

- Maximal runs through a transition system/automaton
  - $(Q, R, Q_0)$
  - Q set of states
  - $R \subseteq Q \times Q$  transition relation, total
  - $Q_0 \subseteq Q$  initial states
  - Traces/runs w =  $q_0 R q_1 R \dots R q_{n-1} R q_n R \dots$

In practice:

- Take your favourite programming/modeling language
- Equip it with discrete transition semantics
- Determine what should be observable events / conditions / execution states
- (Add looping at the end to get traces to be infinite)
- Off you go

#### Example - Concurrent While Language

Commands:

Cmd ::= skip | x := e | Cmd;Cmd | if e Cmd Cmd | while e Cmd | await e Cmd | spawn Cmd | Cmd || Cmd

Stores  $\sigma \in \mathbf{x} \mapsto_{fin} \mathbf{v} \in Val$ 

Configurations c ::=  $\sigma \mid < Cmd, \sigma >$ 

### Example II

Transitions:

- $\sigma \rightarrow \sigma$  (... just to get looping ...)
- <skip,σ> -> σ
- $<\mathbf{x}:=\mathbf{e},\sigma> \rightarrow \sigma[\mathbf{x}\mapsto ||\mathbf{e}||\sigma]$
- <Cmd<sub>1</sub>;Cmd<sub>2</sub>,σ> -> <Cmd<sub>1</sub>';Cmd<sub>2</sub>,σ'> if <Cmd<sub>1</sub>,σ> -> <Cmd<sub>1</sub>',σ'>
- <Cmd<sub>1</sub>;Cmd<sub>2</sub>, $\sigma$ > -> <Cmd<sub>2</sub>, $\sigma$ '> if <Cmd<sub>1</sub>, $\sigma$ > ->  $\sigma$ '
- (... remaining rules in class ... )

Conditions: Boolean/FO expressions in dom( $\sigma_{L}$ )

## Linear Time Temporal Logic, LTL

Logic of temporal relations between events in a trace:

- Invariably (along this execution)  $x \cdot y + z$
- Sometime (along this execution) an acknowledgement packet is sent
- If thread T is infinitely often enabled (along this execution) then T is eventually executed
- By no means the last word:
  - Last packet received along channel a (along this execution) had the shape (b,c,d) (*past*)
  - For all executions (from this state) there is an execution along which a reply is eventually sent (*branching*)
  - No matter what choice B made in the past, it would necessarily come to pass that  $\psi$  (*historical necessity*)

# LTL

#### Syntax: φ ::= P | :φ | φÆφ | Fφ | Gφ | φ U φ | Οφ

Intuitive semantics:

- P: Propositional constant P holds now/at the current time instant
- F $\phi$ : At some future time instant  $\phi$  is true
- G $\phi$ : For all future time instants  $\phi$  is true
- $-\phi U \psi$ :  $\phi$  is true *until*  $\psi$  becomes true
- $O\phi$ :  $\phi$  is true at the *next* time instant

#### Pictorially



#### Semantics

```
Run w
Satisfaction relation w ^{2} \phi
Assume valuation v
v(P): Set of states for which P holds
w<sup>k</sup>: k'th suffix of w
```

```
w<sup>2</sup> P iff w(0) 2 v(P)
w<sup>2</sup> :\phi iff not w<sup>2</sup> \phi
w<sup>2</sup> \phi Æ \psi iff w<sup>2</sup> \phi and w<sup>2</sup> \psi
w<sup>2</sup> F\phi iff exists k ≥ 0. w<sup>k</sup><sup>2</sup> \phi
w<sup>2</sup> G\phi iff for all k ≥ 0. w<sup>k</sup><sup>2</sup> \phi
w<sup>2</sup> \phi U \psi iff exists k ≥ 0. w<sup>k</sup><sup>2</sup> \psi and for all i: 0 · i < k. w<sup>i 2</sup> \phi
w<sup>2</sup> O\phi iff w<sup>1 2</sup> \phi
```

```
For transition system T = (Q,R,Q<sub>0</sub>) and all valuations v:
T <sup>2</sup> \phi iff for all runs w of T, w <sup>2</sup> \phi
```

## Some LTL Formulas

- $\phi \mathbf{\hat{V}} \psi = :(:\phi \mathbf{\mathcal{A}}:\psi)$
- $\phi ! \psi = :\phi \zeta \psi$
- $F\phi = true U \phi$
- Gφ = :F:φ
- $\phi \lor \psi = []\psi \circlearrowright (\psi \lor (\phi \And \psi))$ - (sometimes called "release")
- FGø
  - $\phi$  holds from some point forever =  $\phi$  holds *almost always*
- GF $\phi$ 
  - $\phi$  holds infinitely often (i.o.)
- $GF\phi ! GF\psi$ 
  - if  $\phi$  holds infinitely often then so does  $\psi$
  - − Is this the same as G(F $\phi$  → F $\psi$ )? As GF( $\phi$  →  $\psi$ )? As FG¬  $\phi$  ∨ GF( $\phi$ ∧ F $\psi$ )?

## Spring Example



Conditions: extended, malfunction

Sample paths:

- $q_0 q_1 q_0 q_1 q_2 q_2 q_2 q_2 \dots$
- $q_0 q_1 q_2 q_2 q_2 \dots$
- $q_0 q_1 q_0 q_1 q_0 q_1 \dots$

#### Satisfaction by Single Path



For r:

extended? Oextended? OOextended? Fextended? Gextended? FGextended? FGmalfunction? GFextended? extended U malfunction? (:extended) U extended? (Fextended) U malfunction? (F:extended) U malfunction? G(:extended ! Oextended)

#### Satisfaction by Transition System



For T:

extended? Oextended? OOextended? Fextended? Gextended? FGextended? FGmalfunction? GFextended? extended U malfunction? (:extended) U extended? (Fextended) U malfunction? (F:extended) U malfunction? G(:extended ! Oextended)

#### Example: Mutex

Assume there are 2 processes,  $P_1$  and  $P_r$ State assertions:

- tryCS<sub>i</sub>: Process i is trying to enter critical section
   E.g. tryCS<sub>i</sub>: pc<sub>i</sub> = I<sub>4</sub>
- inCS<sub>i</sub>: Process i is inside its critical section E.g. inCS<sub>i</sub>:  $pc_1 = I_5 \downarrow pc_1 = I_6$

Mutual exclusion:

Responsiveness:

G(tryCS<sub>i</sub> ! F inCS<sub>i</sub>) Process keeps trying until access is granted: G(tryCS<sub>i</sub> ! ((tryCS<sub>i</sub> U inCS<sub>i</sub>) Ç GtryCS<sub>i</sub>))

#### **Example: Fairness**

States: Pairs  $(q,\alpha)$ 

 $\boldsymbol{\alpha}$  label of last transition taken, so

q!<sup>α</sup> q' (q,β) !<sup>α</sup> (q',α)

 $\Sigma$ : Finite set of labels partitioned into subsets P

P: "(finite) set of labels of some process"

State assertions:

- $en_P$ : Some transition labelled  $\alpha$  2 P is enabled i.e.  $(q,\beta)2 v(en_{\alpha})$  iff 9 q'.q!<sup> $\alpha$ </sup> q'
- exec<sub>P</sub>: Label of last executed transition is in P
   i.e. (q,α)2 v(exec<sub>P</sub>) iff α2 P

Note:  $en_P$   $Q_{\alpha 2 P} en_{\{\alpha\}}$  and  $exec_P$   $Q_{\alpha 2 P} exec_{\{\alpha\}}$ 

#### **Fairness Conditions**

Weak transition fairness:

$$\mathcal{A}_{\alpha 2\Sigma}$$
:FG(en<sub>{ $\alpha$ }</sub>  $\mathcal{A}$  : exec<sub>{ $\alpha$ }</sub>)

Or equivalently

 $\mathcal{A}_{\alpha 2\Sigma}(FGen_{\{\alpha\}} \mid GFexec_{\{\alpha\}})$ Strong transition fairness:

$$\mathcal{A}_{\alpha 2\Sigma}(\mathsf{GFen}_{\{\alpha\}} \mid \mathsf{GFexec}_{\{\alpha\}})$$

Weak process fairness:

$$\mathcal{A}_{P}$$
:FG(en<sub>P</sub>  $\mathcal{A}$  : exec<sub>P</sub>)

Strong process fairness:

```
\mathcal{A}_{P} (GFen<sub>P</sub> ! GFexec<sub>P</sub>)
```

(Many other variants are possible)

**Exercise:** Figure out which implications hold between these four fairness conditions. Draw a picture

## **Branching Time Logic**

Sets of paths?

Or computation tree?





## **Computation Tree Logic - CTL**

Syntax:

 $\phi ::= \mathsf{P} \mid :\phi \mid \phi \not A \mathsf{E} \phi \mid \mathsf{A} \mathsf{F} \phi \mid \mathsf{A} \mathsf{G} \phi \mid \mathsf{A} (\phi \cup \phi) \mid \mathsf{A} \mathsf{X} \phi$ 

Formulas hold of states, not paths

A: Path quantifier, along all paths from this state

So:

- AF $\phi$ : Along all paths, at some future time instant  $\phi$  is true
- AG $\phi$ : Along all paths, for all future time instants  $\phi$  is true
- A( $\phi$  U  $\psi$ ): Along all paths,  $\phi$  is true until  $\psi$  becomes true
- AX $\phi$ :  $\phi$  is true for all next states

Note: CTL is closed under negation so also express dual modalities EF, EG, EU, EX (E is existential path quantifier). Check!

## **CTL**, Semantics

Valuation v:  $P \mapsto Q' \mu Q$  as before

 $q^{2}P$  iff  $q^{2}v(P)$ 

q ² : $\phi$  iff not q ²  $\phi$ 

- q ²  $\phi$  Æ  $\psi$  iff q ²  $\phi$  and q ²  $\psi$
- q <sup>2</sup> AF $\phi$  iff for all w such that w(0)=q exists k2N such that w(k) <sup>2</sup>  $\phi$
- q <sup>2</sup> AG $\phi$  iff for all w such that w(0)=q, for all k2N, w(k) <sup>2</sup>  $\phi$
- q <sup>2</sup> A( $\phi$  U  $\psi$ ) iff for all w such that w(0)=q, exists k2N such that w(k) <sup>2</sup>  $\psi$  and for all i: 0· i < k. w(i) <sup>2</sup>  $\phi$
- q<sup>2</sup> AX $\phi$  iff for all w such that w(0) = q, w(1)<sup>2</sup>  $\phi$ (iff for all q' such that q ! q', q'<sup>2</sup>  $\phi$ )

For transition system T = (Q,R,Q<sub>0</sub>): T <sup>2</sup>  $\phi$  iff for all q<sub>0</sub>2 Q<sub>0</sub>, q<sub>0</sub> <sup>2</sup>  $\phi$ 

## CTL – LTL: Brief Comparison

LTL in branching time framework:  $- \phi \mapsto A\phi (\phi \text{ to hold for all paths})$ 

CTL \* LTL: EF  $\varphi$  not expressible in LTL

LTL \* CTL: FGP not expressible in CTL

CTL\*: Extension of CTL with free alternation A, F, G, U, X

Advantages and disadvantages:

- LTL often "more natural"
- Satisfiability: LTL: PSPACE complete, CTL: DEXPTIME complete
- Model checking: LTL: PSPACE complete, CTL: In P

## Adding Past

- Add to LTL pasttime versions of the LTL future time modalities
  - Previously, some time in the past, always in the past, since
- **Theorem** (Gabbay's separation theorem): Every formula in LTL + past is equivalent to a boolean combination of "pure pasttime" or "pure future time" formulas
- Note: This applies regardless of whether time starts at 0 or at  $-\infty$
- **Theorem** (Elimination of past): Pasttime modalities do not add expressive power to LTL

But:

**Theorem** (Succinctness, LMS'02): LTL + past is exponentially more succinct than LTL

#### **Expressive Completeness**

LTL is easily embedded into FOL + linear order

FOL + linear order: First-order logic with 0 and <, unary predicate symbols, and interpreted over  $\omega$ 

**Theorem** (Kamp'68, GPSS'80, Expressive completeness) If L is definable in FOL + linear order then L is definable in LTL

#### So Are We Done?

What about "every even state"



Theorem: A"every even state"P is not expressible in LTL, CTL, CTL\*

One solution:

- LTL formulas determine infinite words
- So: skip temporal logic (... temporarily ...) and use automata on infinite words instead

#### Automata Over Finite Words

Finite state automaton A =  $(Q, \Sigma, \Delta, I, F)$ :

- Q: Finite set of states
- $-\Sigma$ : Finite alphabet
- Δ μ Q£ Σ £ Q: Transition relation
   Write q!<sup>a</sup> q' for Δ(q,a,q') as before
- I µ Q: Start states



а

Word  $a_1a_2...a_n$  is accepted, if there is sequence  $q_0 \ !^{a_1} q_1 \ !^{a_2} \dots \ !^{a_n} q_n$  such that  $q_0 2 I$  and  $q_n 2 F$ 

#### Automata Over Infinite Words

Letters a2 $\Sigma$  can represent events, conditions, states

Infinite word  $w \in \Sigma^{\omega}$ :

- Function w:  $\omega ! \Sigma$
- Equivalently: Infinite sequence  $w = a_0 a_1 a_2 \dots a_n \dots$
- Terminology:  $\omega$ -words
- $\omega$ -words are traces / paths / runs

Buchi automaton: Finite state automaton, but on infinite words

w-word w is *accepted* if accepting state visited infinitely (!) often

ω-language L ⊆ Σ<sup>ω</sup> is *Buchi definable* if L is the set of ω-words accepted by some B. A.

#### Example



#### Which infinite words are accepted?

- ababab ...  $(= (ab)^{\omega})$  ?
- aaaaaaa... (=  $a^{\omega}$ ) ?
- bbbbbb...  $(= b^{\omega})$  ?
- aaabbbbb... (=  $aaab^{\omega}$ ) ?
- ababbabbbabbba... ?

#### Nondeterminism

- What is the language accepted by this automaton?
- What is the corresponding LTL property if b = inCS and a = : b?



#### Another Example

Letters represent propositions

Example: GFinCS, a=inCS, b=: inCS



#### Yet More Examples



- Property: G(d ! Fe)
- Idea:
  - $q_0$ ; Have seen : d Ç e
  - q<sub>1</sub>: Saw d, now wait for e



#### Even More...

Property: G(a ! (bUc))

Idea:

- $q_0$ : Body of G immediately ok
- $q_1$ : Awaiting c



Property:  $\neg G(a ! (bUc)) = F(a \not = \neg (bUc))$ 

Idea:

- ¬(bUc): b becomes false some time without c having become true first
- $q_0$ : Waiting ...
- $q_1$ : Have seen a with b and  $\neg c$
- q<sub>2</sub>: Committing ...



## Generally

**Theorem:** If L is LTL definable then L is the set of words accepted by some B.A.

Why? The set of B.A. recognizable languages is closed under all LTL connectives

Hard case is complementation [Safra'88]

BTW then we can do LTL model checking:

- Represent model as B.A. A<sub>1</sub>
- Represent LTL spec as A<sub>2</sub>
- Emptiness of L(A) = {w | A accepts w} is polynomially decidable
- $L(A_1) \subseteq L(A_2)$  iff  $L(A_1) \cap \neg L(A_2)$  is empty
- Example: The SPIN model checker

#### Aside: Deterministic Buchi Automata

Consider  $\phi$  = FGa where  $\Sigma$  = {a,b}



Suppose A recognizes  $\phi$ 

A deterministic

A reaches accepting state on some input a<sup>n1</sup>

And on a<sup>n1</sup>ba<sup>n2</sup>

And on a<sup>n1</sup>ba<sup>n2</sup>ba<sup>n3</sup>

And on  $a^{n1}ba^{n2}ba^{n3}b \dots b \dots b \dots$ 

So: Nondeterministic Buchi automata strictly more expressive than deterministic ones

And: Deterministic B. A. not closed under complement

#### **Temporal Equations**

Idea: Extend LTL with solutions of equations

- $\underline{\mathsf{F}}\phi = \phi \lor \mathsf{O}\underline{\mathsf{F}}\phi$
- $\underline{G\phi} = \phi \land O\underline{G\phi}$
- $\underline{\phi \cup \psi} = \psi \lor (\phi \land O(\underline{\phi \cup \psi}))$
- Even  $\phi = \phi \land OOEven \phi$

Complication: Solutions are not unique

**Exercise:** How many solutions (as sets L of traces/words w) can you find to the above four equations?

#### The Linear Time $\mu$ -calculus, L<sub> $\mu$ </sub>

Formula  $\phi(X)$  in free formula variable X determines function  $\phi : L \mapsto \phi(L)$ 

If  $\phi(X)$  is monotone in X then  $|| \phi ||$  is monotone as function on ({L | L  $\subseteq \Sigma^{\omega}$ }, $\subseteq$ )

**Theorem** (Tarski's fixed point theorem): A monotone function on a complete lattice has a complete lattice of fixed points

So, for each monotone  $\phi(X)$  can find a largest and a smallest solution of equation  $X = \phi(X)$ 

Notation:

- $\mu X.\phi(X)$ : Least solution of  $X = \phi(X)$
- $vX.\phi(X)$ : Greatest solution of  $X = \phi(X)$

Note:

- $F\phi = \mu X. \phi \vee OX$
- $G\phi = vX.\phi \wedge OX$
- $\phi \cup \psi = \mu X. \psi \vee (\phi \land OX)$
- Even  $\phi = vX.\phi \land OOX$

**Exercise:** Exchange  $\mu$  and  $\nu$  in the 4 examples above. What property is defined?

Hint: Which is the largest, resp. smallest L that solves the equation?

## Expressiveness of $L_{\mu}$

**Theorem:** An  $\omega$ -language is definable in L<sub>µ</sub> iff it is recognized by a B.A.

Direct proof:

- $\Leftarrow$ : Represent B.A. in L<sub>µ</sub> (easy)
- ⇒: Show that B.A. definable languages are closed under all L<sub>µ</sub> connectives. Hard part is µ, cf. (Dam, 92)

But many alternative characterizations exist

#### **Alternative Characterizations**

S1S: Monadic second order logic of successor 9 X(02 X Æ 8y8z(succ(y,z) ! (y2X \$ : z2X)) Æ 8y(y2X ! a(y)))

(all even symbols are a's)

QPLTL: LTL with propositional quantification 9 X((X Æ G(X \$ O:X) Æ G(x ! a))

 $\omega$ -regular expressions

a((a [ b)a)<sup>ω</sup>

**Theorem** (Buchi et al): An  $\omega$ -language is recognized by a B.A. iff it is definable in one of L<sub>µ</sub>, S1S, QPLTL, or as an  $\omega$ -regular expression

## What About Branching Time?

More difficult. Starting point are binary trees:

**Theorem** (Rabin): S2S (the monadic second-order theory of two successors) is decidable

For more general structures use e.g.

- Alternating tree automata
- Modal \mu-calculus
- Parity games

Much activity in the past 10 years

But this is outside the scope of this course