
Introduction to Temporal Logic

Mads Dam
Theoretical Computer Science

KTH, 2015

About the Course
•  Lecturers
•  Content
•  Examination
•  Lecture material
•  Registration

What is TL About?
Formalised properties of time-varying systems

•  What time-varying systems?
•  What properties?
•  Algorithms
•  Proof systems

Our tasks:
•  Show we can do useful stuff with this
•  Understand and compare set-ups for expressiveness

and tractability

This is why we think
formalisation pays off

Some form of tractability

What Time-Varying Systems?
•  Continuous real-valued functions?
•  Discrete program traces?
•  Execution trees?
•  Automata?
•  Markov chains?
•  Java code?
•  Distributed processes?
•  Real time? Or implicit time?
•  Histories or future?
•  Finite or infinite?
•  Linear or branching? Tree shaped? Graph shaped?

Default Choice – Traces/Paths/Runs
Time is discrete
Starts at 0
Goes on forever

Time points decorated by events

Or conditions/truth assignments/valuations

Or execution traces

0 1 2 3 … … n -1 n n +1

0 1 2 3 … … n -1 n n +1

a b a d foo a bar

0 1 2 3 … … n -1 n n +1

P,¬Q ¬P,¬Q
P,Q ¬P,¬Q P,Q P,Q

¬P, Q

0 1 2 3 … … n -1 n n +1

x=0
y=0

x=1
y=0

x=8
y=0

x=3
y=1

x=5
y=2

x=0
y=0

x=0
y=0

How Are Traces Produced?
•  Maximal runs through a transition system/automaton

–  (Q,R,Q0)
–  Q set of states
–  R ⊆ Q × Q transition relation, total
–  Q0 ⊆ Q initial states
–  Traces/runs w = q0 R q1 R … R qn-1 R qn R …

In practice:
•  Take your favourite programming/modeling language
•  Equip it with discrete transition semantics
•  Determine what should be observable events /

conditions / execution states
•  (Add looping at the end to get traces to be infinite)
•  Off you go

Example - Concurrent While Language
Commands:
Cmd ::= skip | x := e | Cmd;Cmd | if e Cmd Cmd
 | while e Cmd | await e Cmd | spawn Cmd

 | Cmd || Cmd

Stores σ ∈ x !fin v ∈ Val

Configurations c ::= σ | <Cmd, σ>

Example II
Transitions:
•  σ -> σ (… just to get looping …)
•  <skip,σ> -> σ
•  <x:=e,σ> -> σ[x ! ||e||σ]
•  <Cmd1;Cmd2,σ> -> <Cmd1’;Cmd2,σ’>

 if <Cmd1,σ> -> <Cmd1’,σ’>
•  <Cmd1;Cmd2,σ> -> <Cmd2,σ’>

 if <Cmd1,σ> -> σ’
•  (… remaining rules in class …)

Conditions: Boolean/FO expressions in dom(σι)

Traces: c0 -> c1 -> c2 -> … -> cn-1 -> cn -> …

Linear Time Temporal Logic, LTL
Logic of temporal relations between events in a trace:

–  Invariably (along this execution) x · y + z
–  Sometime (along this execution) an acknowledgement packet

is sent
–  If thread T is infinitely often enabled (along this execution) then

T is eventually executed

By no means the last word:

–  Last packet received along channel a (along this execution)
had the shape (b,c,d) (past)

–  For all executions (from this state) there is an execution along
which a reply is eventually sent (branching)

–  No matter what choice B made in the past, it would necessarily
come to pass that ψ (historical necessity)

LTL
Syntax:
 φ ::= P | :φ | φÆφ | Fφ | Gφ | φ U φ | Oφ

Intuitive semantics:

–  P: Propositional constant P holds now/at the current time
instant

–  Fφ: At some future time instant φ is true
–  Gφ: For all future time instants φ is true
–  φ U ψ: φ is true until ψ becomes true
–  Oφ: φ is true at the next time instant

Pictorially

Fφ: … … … … φ … ...

Gφ: φ φ φ φ φ φ φ

φ U ψ: φ φ φ φ ψ … ...

Oφ: ... φ … ...

Semantics
Run w
Satisfaction relation w ² φ
Assume valuation v
v(P): Set of states for which P holds
wk: k’th suffix of w

w ² P iff w(0) 2 v(P)
w ² :φ iff not w ² φ
w ² φ Æ ψ iff w ² φ and w ² ψ
w ² Fφ iff exists k ≥ 0. wk ² φ
w ² Gφ iff for all k ≥ 0. wk ² φ
w ² φ U ψ iff exists k ≥ 0. wk ² ψ and for all i: 0 · i < k. wi ² φ
w ² Oφ iff w1 ² φ

For transition system T = (Q,R,Q0) and all valuations v:
T ² φ iff for all runs w of T, w ² φ

Some LTL Formulas
•  φ Ç ψ = :(:φ Æ :ψ)
•  φ ! ψ = :φ Ç ψ
•  Fφ = true U φ
•  Gφ = :F:φ
•  φ V ψ = []ψ Ç (ψ U (φÆψ))

–  (sometimes called ”release”)
•  FGφ

–  φ holds from some point forever = φ holds almost always
•  GFφ

–  φ holds infinitely often (i.o.)
•  GFφ ! GFψ

–  if φ holds infinitely often then so does ψ
–  Is this the same as G(Fφ → Fψ)? As GF(φ → ψ)? As FG¬ φ ∨

GF(φ∧ Fψ)?

Spring Example

Conditions: extended, malfunction

Sample paths:
•  q0 q1 q0 q1 q2 q2 q2 ...
•  q0 q1 q2 q2 q2 ...
•  q0 q1 q0 q1 q0 q1 ...

q0 q1 q2 pull

release

release

extended extended
malfunction

Satisfaction by Single Path

extended?
Oextended?
OOextended?
Fextended?
Gextended?
FGextended?
FGmalfunction?

q0 q1 q2 pull

release

release

extended extended
malfunction

w = q0q1q0q1q2q2q2 ...

GFextended?
extended U malfunction?
(:extended) U extended?
(Fextended) U malfunction?
(F:extended) U malfunction?
G(:extended ! Oextended)

For r:

Satisfaction by Transition System

q0 q1 q2 pull

release

release

extended extended
malfunction

T:

extended?
Oextended?
OOextended?
Fextended?
Gextended?
FGextended?
FGmalfunction?

GFextended?
extended U malfunction?
(:extended) U extended?
(Fextended) U malfunction?
(F:extended) U malfunction?
G(:extended ! Oextended)

For T:

Example: Mutex
Assume there are 2 processes, Pl and Pr
State assertions:

–  tryCSi: Process i is trying to enter critical section
 E.g. tryCSl: pcl = l4

–  inCSi: Process i is inside its critical section
 E.g. inCSl: pcl = l5 Ç pcl = l6

Mutual exclusion:
G(:(inCSl Æ inCSr))

Responsiveness:
G(tryCSi ! F inCSi)

Process keeps trying until access is granted:
G(tryCSi ! ((tryCSi U inCSi) Ç GtryCSi))

Example: Fairness
States: Pairs (q,α)
α label of last transition taken, so

q!α q’
(q,β) !α (q’,α)

Σ: Finite set of labels partitioned into subsets P
P: ”(finite) set of labels of some process”

State assertions:

–  enP: Some transition labelled α 2 P is enabled
 i.e. (q,β)2 v(enα) iff 9 q’.q!α q’

–  execP: Label of last executed transition is in P
 i.e. (q,α)2 v(execP) iff α2 P

Note: enP $ Çα2 Pen{α} and execP $ Çα2 Pexec{α}

Fairness Conditions
Weak transition fairness:

Æα2Σ:FG(en{α} Æ : exec{α})
Or equivalently

Æα2Σ(FGen{α} ! GFexec{α})
Strong transition fairness:

Æα2Σ(GFen{α} ! GFexec{α})
Weak process fairness:

ÆP:FG(enP Æ : execP)
Strong process fairness:

ÆP (GFenP ! GFexecP)
(Many other variants are possible)

Exercise: Figure out which implications hold between

these four fairness conditions. Draw a picture

Branching Time Logic
Sets of paths? Or computation tree?

. .
 .

.

. .
 .

.

. .
 .

.

. .
 .

.

. .
 .

.

Computation Tree Logic - CTL
Syntax:
 φ ::= P | :φ | φÆφ | AFφ | AGφ | A(φ U φ) | AXφ

Formulas hold of states, not paths

A: Path quantifier, along all paths from this state

So:

–  AFφ: Along all paths, at some future time instant φ is true
–  AGφ: Along all paths, for all future time instants φ is true
–  A(φ U ψ): Along all paths, φ is true until ψ becomes true
–  AXφ: φ is true for all next states

Note: CTL is closed under negation so also express dual modalities
EF, EG, EU, EX (E is existential path quantifier). Check!

CTL, Semantics
Valuation v: P ! Q’ µ Q as before

q ² P iff q 2 v(P)
q ² :φ iff not q ² φ
q ² φ Æ ψ iff q ² φ and q ² ψ
q ² AFφ iff for all w such that w(0)=q exists k2N such that w(k) ² φ
q ² AGφ iff for all w such that w(0)=q, for all k2N, w(k) ² φ
q ² A(φ U ψ) iff for all w such that w(0)=q, exists k2N such that w(k) ² ψ

and for all i: 0· i < k. w(i) ² φ
q ² AXφ iff for all w such that w(0) = q, w(1) ² φ

(iff for all q’ such that q ! q’, q’² φ)

For transition system T = (Q,R,Q0):
T ² φ iff for all q02 Q0, q0 ² φ

CTL – LTL: Brief Comparison
LTL in branching time framework:

–  φ ! Aφ (φ to hold for all paths)

CTL * LTL: EFφ not expressible in LTL

LTL * CTL: FGP not expressible in CTL

CTL*: Extension of CTL with free alternation A, F, G, U, X

Advantages and disadvantages:

–  LTL often ”more natural”
–  Satisfiability: LTL: PSPACE complete, CTL: DEXPTIME

complete
–  Model checking: LTL: PSPACE complete, CTL: In P

Adding Past
Add to LTL pasttime versions of the LTL future time

modalities
 Previously, some time in the past, always in the past,

since
Theorem (Gabbay’s separation theorem): Every formula

in LTL + past is equivalent to a boolean combination of
”pure pasttime” or ”pure future time” formulas

Note: This applies regardless of whether time starts at 0
or at -∞

Theorem (Elimination of past): Pasttime modalities do not
add expressive power to LTL

But:
Theorem (Succinctness, LMS’02): LTL + past is

exponentially more succinct than LTL

Expressive Completeness
LTL is easily embedded into FOL + linear order

FOL + linear order: First-order logic with 0 and <, unary

predicate symbols, and interpreted over ω

Theorem (Kamp’68, GPSS’80, Expressive completeness)
If L is definable in FOL + linear order then L is definable in

LTL

So Are We Done?
What about ”every even state”

Theorem: A”every even state”P is not expressible in LTL,

CTL, CTL*

One solution:
•  LTL formulas determine infinite words
•  So: skip temporal logic (… temporarily …) and use

automata on infinite words instead

0 1 2 3 … … 2n-1 2n 2n+1

P P P ¬P P P ¬P

Automata Over Finite Words
Finite state automaton A = (Q,Σ,Δ,I,F):

–  Q: Finite set of states
–  Σ: Finite alphabet
–  Δ µ Q£ Σ £ Q: Transition relation

 Write q!a q’ for Δ(q,a,q’) as before
–  I µ Q: Start states
–  F µ Q: Accepting states

Word a1a2...an is accepted, if there is sequence

q0 !a1 q1 !a2 ... !an qn
such that q02 I and qn2 F

a

a

b

b

Automata Over Infinite Words
Letters a2Σ can represent events, conditions, states

Infinite word w ∈ Σω:

–  Function w: ω ! Σ
–  Equivalently: Infinite sequence w = a0a1a2 ... an ...
–  Terminology: ω-words
–  ω-words are traces / paths / runs

Buchi automaton: Finite state automaton, but on infinite

words
 ω-word w is accepted if accepting state visited infinitely

often
 ω-language L ⊆ Σω is Buchi definable if L is the set of ω-

words accepted by some B. A.

(!)

Example

Which infinite words are accepted?
–  ababab ... (= (ab)ω) ?
–  aaaaaa... (= aω) ?
–  bbbbbb... (= bω) ?
–  aaabbbbb... (= aaabω) ?
–  ababbabbbabbbba... ?

a

a

b

b

Nondeterminism
•  What is the language accepted by this automaton?
•  What is the corresponding LTL property if b = inCS and

a = : b?

a,b

a a

Another Example
Letters represent propositions

Example: GFinCS, a=inCS, b=: inCS

a

a

b

b

Yet More Examples
•  a = inCS1 Æ inCS2
•  b = : a
•  c = true
•  Property: G: a

•  Property: G(d ! Fe)
•  Idea:

–  q0; Have seen : d Ç e
–  q1: Saw d, now wait for e

b

a c

Or just:

b

d ! e

dÆ :e

:e

e

q0 q1

Even More...
Property: G(a ! (bUc))
Idea:

–  q0: Body of G immediately ok
–  q1: Awaiting c

Property: ¬G(a ! (bUc)) = F(a Æ ¬(bUc))
Idea:

–  ¬(bUc): b becomes false some time without c having become
true first

–  q0: Waiting ...
–  q1: Have seen a with b and ¬c
–  q2: Committing ...

q0 q1

: a Ç c

a Æ b Æ : c

b Æ : c

c

q0 q1

true b Æ : c
a Æ b Æ : c

q2 aÆ : b Æ : c : b Æ: c

true

Generally
Theorem: If L is LTL definable then L is the set of words

accepted by some B.A.
Why? The set of B.A. recognizable languages is closed

under all LTL connectives
Hard case is complementation [Safra’88]

BTW then we can do LTL model checking:
•  Represent model as B.A. A1
•  Represent LTL spec as A2
•  Emptiness of L(A) = {w | A accepts w} is polynomially

decidable
•  L(A1) ⊆ L(A2) iff L(A1) ∩ ¬ L(A2) is empty
•  Example: The SPIN model checker

Aside: Deterministic Buchi Automata
Consider φ = FGa where Σ = {a,b}

Suppose A recognizes φ
A deterministic
A reaches accepting state on some input an1

And on an1ban2
And on an1ban2ban3
And on an1ban2ban3b ... b ... b ...
So: Nondeterministic Buchi automata strictly more

expressive than deterministic ones
And: Deterministic B. A. not closed under complement

a,b
a a

Temporal Equations
Idea: Extend LTL with solutions of equations

•  Fφ = φ ∨ OFφ
•  Gφ = φ ∧ OGφ
•  φ U ψ = ψ ∨ (φ ∧ O(φ U ψ))
•  Even φ = φ ∧ OOEven φ

Complication: Solutions are not unique

Exercise: How many solutions (as sets L of traces/words

w) can you find to the above four equations?

The Linear Time µ-calculus, Lµ

Formula φ(X) in free formula variable X determines
function φ : L ! φ(L)

If φ(X) is monotone in X then || φ || is monotone as function

on ({L | L ⊆ Σω},⊆)

Theorem (Tarski’s fixed point theorem): A monotone

function on a complete lattice has a complete lattice of
fixed points

So, for each monotone φ(X) can find a largest and a

smallest solution of equation X = φ(X)

Lµ
Notation:
•  µX.φ(X): Least solution of X = φ(X)
•  νX.φ(X): Greatest solution of X = φ(X)

Note:
•  Fφ = µX. φ ∨ OX
•  Gφ = νX.φ ∧ OX
•  φ U ψ = µX. ψ ∨ (φ ∧ OX)
•  Even φ = νX.φ ∧ OOX

Exercise: Exchange µ and ν in the 4 examples above.

What property is defined?
Hint: Which is the largest, resp. smallest L that solves the

equation?

Expressiveness of Lµ

Theorem: An ω-language is definable in Lµ iff it is
recognized by a B.A.

Direct proof:
⇐: Represent B.A. in Lµ (easy)
⇒: Show that B.A. definable languages are closed under

all Lµ connectives. Hard part is µ, cf. (Dam, 92)

But many alternative characterizations exist

Alternative Characterizations
S1S: Monadic second order logic of successor

 9 X(02 X Æ 8y8z(succ(y,z) ! (y2X $: z2X))
Æ 8y(y2X ! a(y)))

 (all even symbols are a’s)

QPLTL: LTL with propositional quantification

 9 X((X Æ G(X $ O:X) Æ G(x ! a))

ω-regular expressions
a((a [b)a)ω

Theorem (Buchi et al): An ω-language is recognized by a
B.A. iff it is definable in one of Lµ, S1S, QPLTL, or as an
ω-regular expression

What About Branching Time?
More difficult. Starting point are binary trees:

Theorem (Rabin): S2S (the monadic second-order theory

of two successors) is decidable

For more general structures use e.g.
•  Alternating tree automata
•  Modal \mu-calculus
•  Parity games

Much activity in the past 10 years

But this is outside the scope of this course

